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Course Objectives: 
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MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 
INDEX 

 

S. No Unit Topic Page no 

 

1 
I 

Introduction to Statistics, Difference between 

inferential statistics and descriptive statistics 
1 

2 I 
Inferential Statistics- Drawing Inferences from Data, 

Random Variables, Normal Probability Distribution  4 

3 I 
Sampling, Sample Statistics and Sampling 

Distributions 9 

4 I Overview and About R, R and R studio Installation, 

Descriptive Data analysis using R 
12 

5 I 
Description of basic functions used to describe data in 

R. 12 

 

 

 

S. No 
 

Unit Topic Page no 

 

1 
II 

Data manipulation with R: Data manipulation 

packages 
30 

2 II Data visualization with R 48 

3 II Data visualization in Watson Studio: Adding data to 

data refinery 
55 

4 II Visualization of Data on Watson Studio 58 

              

   

S. No 
 

Unit Topic Page  no 

1 III Python: Introduction to Python,  62 

2 III How to Install, Introduction to Jupyter Notebook,  66 

3 III Python scripting basics 68 

4 III Numpy 85 

5 III Pandas 88 



 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 
 
 

S. No 
 

Unit Topic Page no 

1 IV Data Visualization Tools in Python- Introduction to 

Matplotlib 
107 

2 IV Basic plots using matplotlib 109 

3 IV Specialized Visualization Tools using Matplotlib 110 

4 IV 
Advanced Visualization Tools using Matplotlib- 

Waffle Charts, Word Clouds 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 
 

S. No 
 

Unit Topic Page no 

1 V 
Introduction to Seaborn: Seaborn functionalities 

and usage 116 

2 V Spatial Visualizations and Analysis in Python with 

Folium 
118 

3 V Case Study 119 



Data Visualization     Department of CSE 

MRCET  1 
 

UNIT – I 

 

 

 

 

 

Introduction to Statistics 

Statistics is a mathematical science including methods of collecting, organizing and analyzing data 
in such a way that meaningful conclusions can be drawn from them. 

Data can be defined as groups of information that represent the qualitative or quantitative attrib-
utes of a variable or set of variables. In layman's terms, data in statistics can be any set of infor-
mation that describes a given entity. An example of data can be the ages of the students in a 
given class. When you collect those ages, that becomes your data. 

As we have seen in the definition of statistics, data collection is a fundamental aspect and there-
fore there are different methods of collecting data which when used on one set will result in dif-
ferent kinds of data. Let's move on to look at these individual methods of collection to better 
understand the types of data that will result. 

1. Census Data Collection 

Census data collection is a method of collecting data whereby all the data from every member of 
the population is collected. 

2. Sample Data Collection 

Sample data collection, which is commonly just referred to as sampling, is a method which col-
lects data from only a chosen portion of the population. 

Sampling assumes that the portion that is chosen to be sampled is a good estimate of the entire 
population. Thus, one can save resources and time by only collecting data from a small part of 
the population. But this raises the question of whether sampling is accurate or not. The answer is 
that for the most part, sampling is approximately accurate. This is only true if you choose your 
sample carefully to be able to closely approximate what the true population consists of. 

Sampling is used commonly in everyday life, for example, all the different research polls that are 
conducted before elections. Pollsters don't ask all the people in a given state who they'll vote for, 
but they choose a small sample and assume that these people represent how the entire popula-
tion of the state is likely to vote. History has shown that these polls are almost always close to 
accuracy, and as such sampling is a very powerful tool in statistics. 

Introduction to Statistics : Introduction to Statistics, Difference between inferential sta-

tistics and descriptive statistics, Inferential Statistics- Drawing Inferences from Data, 

Random Variables, Normal Probability Distribution, Sampling, Sample Statistics and 

Sampling Distributions. 

R overview and Installation- Overview and About R, R and R studio Installation, De-

scriptive Data analysis using R, Description of basic functions used to describe data in 

R. 
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3. Experimental Data Collection 

Experimental data collection involves one performing an experiment and then collecting the data 
to be further analysed. Experiments involve tests and the results of these tests are your data. 
An example of experimental data collection is rolling a die one hundred times while recording 
the outcomes. Your data would be the results you get in each roll. The experiment could involve 
rolling the die in different ways and recording the results for each of those different ways. 

4. Observational Data Collection 

Observational data collection method involves not carrying out an experiment but observing 
without influencing the population at all. Observational data collection is popular in studying 
trends and behaviors of society where, for example, the lives of a bunch of people are observed 
and data is collected for the different aspects of their lives. Analysis of data collected in such 
ways can broadly categorized into 2 categories called descriptive and inferential statistics. 

Descriptive vs Inferential Statistics 

Descriptive statistics deals with the processing of data without attempting to draw any inferences 
from it. The data are presented in the form of tables and graphs. The characteristics of the data 
are described in simple terms. Events that are dealt with include everyday happenings such as ac-
cidents, prices of goods, business, incomes, epidemics, sports data, population data. 
Inferential statistics is a scientific discipline that uses mathematical tools to make forecasts and 
projections by analyzing the given data. This is of use to people employed in such fields as engi-
neering, economics, biology, the social sciences, business, agriculture and communications. 

Descriptive Statistics 

Descriptive statistics is the term given to the analysis of data that helps describe, show or sum-
marize data in a meaningful way such that, for example, patterns might emerge from the data. 
Descriptive statistics do not, however, allow us to make conclusions beyond the data we have 
analyzed or reach conclusions regarding any hypotheses we might have made. They are simply a 
way to describe our data. 
 
Descriptive statistics are very important because if we simply presented our raw data it would be 
hard to visualize what the data was showing, especially if there was a lot of it. Descriptive statis-
tics therefore enables us to present the data in a more meaningful way, which allows simpler in-
terpretation of the data. For example, if we had the results of 100 records of students' marks, we 
may be interested in the overall performance of those students. We would also be interested in 
the distribution or spread of the marks. Descriptive statistics allow us to do this. Typically, there 
are two general types of statistic that are used to describe data: 

1. Measures of Central Tendency: 

These are ways of describing the central position of a frequency distribution for a group of data. 
In this case, the frequency distribution is simply the distribution and pattern of marks scored by 
the 100 students from the lowest to the highest. We can describe this central position using the 
mode, median, and mean. 
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2. Measures of Spread: 

These are ways of summarizing a group of data by describing how spread out the scores is. For 
example, the mean score of our 100 students may be 65 out of 100. However, not all students 
will have scored 65 marks. Rather, their scores will be spread out. Some will be lower and others 
higher. Measures of spread help us to summarize how spread out these scores is. To describe 
this spread, a number of statistics are available to us, including the range, quartiles, absolute de-
viation, variance and standard deviation. 

Measures of Central Tendencies: 

A measure of central tendency is a single value that attempts to describe a set of data by identify-
ing the central position within that set of data. As such, measures of central tendency are some-
times called measures of central location. They are also classed as summary statistics. The mean 
(often called the average) is most likely the measure of central tendency that you are most famil-
iar with, but there are others, such as the median and the mode. 
The mean, median and mode are all valid measures of central tendency, but under different con-
ditions, some measures of central tendency become more appropriate to 
use than others. 

Mean: 
The mean is the average of all numbers and is sometimes called the arithmetic. To calculate 
mean, add together all of the numbers in a set and then divide the sum by the total count of 
numbers. 

 

Where (x1, x2, x3,…..xn) are all the elements in the sample and n is the size of the sample. 

For example, in a data centre rack, five servers consume 100 watts, 98 watts, 105 watts, 90 watts 
and 102 watts of power, respectively. The mean power use of that rack is calculated as (100 + 98 
+ 105 + 90 + 102 W)/5 servers = a calculated mean of 99 W per server. 

Median 
In a data center, means and medians are often tracked over time to spot trends, which inform 
capacity planning or power cost predictions. The statistical median is the middle number in a se-
quence of numbers. To find the median, organize each number in order by size; the number in 
the middle is the median. 

For the five servers in the rack, arrange the power consumption figures from lowest to highest: 
90 W, 98 W, 100 W, 102 W and 105 W. The median power consumption of the rack is 100 W. If 
there is an even set of numbers, average the two middle numbers. For example, if the rack had a 
sixth server that used 110 W, the new number set would be 90 W, 98 W, 100 W, 102 W, 105 W 
and 110 W. Find the median by averaging the two middle numbers: (100 + 102)/2 = 101 W. 
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Mode 
The mode is the number that occurs most often within a set of numbers. For the server power 
consumption examples above, there is no mode because each element is different. But suppose 
the administrator measured the power consumption of an entire network operations centre 
(NOC) and the set of numbers is 90 W, 104 W, 98 W, 98 W, 105 W, 92 W, 102 W, 100 W, 110 
W, 98 W, 210 W and 115 W. The mode is 98 W since that power consumption measurement oc-
curs most often amongst the 12 servers. Mode helps identify the most common or frequent oc-
currence of a characteristic. It is possible to have two modes (bimodal), three modes (tri modal) 
or more modes within larger sets of numbers. 

Measures of spread 

A measure of spread, sometimes also called a measure of dispersion, is used to describe the vari-
ability in a sample or population. It is usually used in conjunction with a measure of central ten-
dency, such as the mean or median, to provide an overall description of a set of data. 
The range, the variance, and the standard deviation are the most common measures of spread or 
variation. The range is the length of the smallest interval which contains all the data. It is calcu-
lated by subtracting the smallest observation (sample minimum) from the greatest (sample 
maximum). Alternatively, the range can be articulated as simply listing the lowest to highest value 
(i.e. range of 2 – 10). 

The variance is the average difference of each value in the sample from the mean. 

 

The standard deviation is simply the square root of the variance. 

Inferential Statistics > Drawing Inferences from Data 

The objective of making inference from data is to make intelligent assertion like - 

1. People who don‟t smoke live longer than people who smoke 
2. 80% of all vehicles in USA are 4 wheelers 

Why making inference from data is important? 

In our professional life, we make decision driven by data. It is always a better idea to have data to 
back our decision. In case if we don‟t have data to back our decision, it can be easy that we can 
make wrong conclusion. It is a tangible way which you can use to defend yourself from the con-
sequence of a decision which was correct based on information available at the point when deci-
sion was made, and which then went wrong later. 

How to make assert 

Let‟s take the above example statement, People who don‟t smoke live longer than people who 
smoke. 
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We all know how long a person lives is subject to chance. No one will know how he or she will 
live. Any variable which is subjected to chance is called random variable.  A random variable 
could take any one of different value. And the behavior of random variable is governed by 
their probability distributions. 

Usually we will study a small group of people who smoke daily and then compare them with an-
other small group of people who don‟t smoke. This is called sampling. 

For each of these 2 small groups, we will try and form a Hypothesis what might be true for all 
people and see if this Hypothesis is supported or not supported by statistics. 

Our findings about the sample would allow us to test our Hypothesis. And this testing would 
rely on probability distributions of the underlying random variable. 

This process of testing hypothesis is key, to make defensible assertion which are backed by data. 

Random variables are variable 

-Whose value cannot be determined before an event happens. 

- Whose value is subject to variation due to chance, but we know the value is restricted to a finite 
set of values. 

Example of Random variable 

- A person‟s blood type 
- Number of leaves on a tree 
- Number of times a user visits LinkedIn in a day 
- Length of a tweet. 
 
Types of random variable 

- Discrete, which can take only integer values (like 0,1,2,…) 
- Continuous, which can take any value from a range of values 
- Categorical, which can take one of a limited, fixed set of values. Eg., red, blue 

Now let‟s take a problem like fraud detection. To detect any fraudulent card transaction, we need 
to identify those variables which are related to a card transaction and can influence the problem. 
Below are few such variables and their types. 
1. Amount spent (0 to ∞) – Continuous 
2. IP address (set of all IP address in the world) – Categorical 
3. Number of failed attempts on using the card (0, 1, 2.. ) – Discrete 
4. Time since last transactions (0 … ∞) – Continuous 
5. Location of transaction (Austin, Dallas, New York) – Categorical 
 
As we see, each of these variables can have some influence on the transaction. We will not know 
the value of these variables before the transaction occur but will know the range for their values. 
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And for each transaction, each variable‟s value will be different, but it has to be from with in this 
set of range. 

Statistical Experiment  

Below statistic report showing LinkedIn user‟s top 10 geographical distribution. Let say we need 
to pick a user at random from the entire group of LinkedIn user, and tell what country they are 
likely to be from. This is a statistical experiment – whose set of outcomes can be specified be-
forehand, but the actual outcome of the experiment is subject to chance. 

 

Please note here the country of the user will be random variable which usually will be repre-
sented as X. Probability distribution is a table or function that links each outcome of a statistical 
experiment with its probability of occurrence. 

P (the person picked is from USA) = P(X) = 0.3 (from above table) 

Tossing a Die 

Another statistical experiment is tossing a die. When we toss a die, we will not know which value 
will come up, but we will know it has to be one of the values from 1 to 6. The outcome of a sta-
tistical experiment is represented by random variable. 
In this case let say the outcome of the toss is X. Now X will be a discrete variable as it can take 
value from 1 to 6 all integers. Below table links each possible value of X with its probability. 

 

As we see, all of the outcomes have equal probability and hence it is called uniform probability 
distribution. A Uniform distribution is a distribution that has a constant probability or function. 

So as random variable can be Discrete or Continuous, so can their probability distribution also. 
Statisticians and Mathematicians have studied a lot of different random variables in nature and 
realized that there are some recurring themes. They have defined some standard distribution and 
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most random variables that you would ever encounter would fall into one of these below distri-
butions. 

 

Normal Distribution 

Let‟s talk about the normal distribution which is very commonly seen in many instances of ma-
chine learning and statistical problems. Normal distribution is a distribution pattern which hap-
pens to occur lot in many natural phenomena. Below are some examples of normally distributed 
random variables which when plotted on a curve will results in an inverted curved which is a 
normal distribution. 

- Height of a person 

- Blood pressure 

- Performance of students in a class 

In normal distribution, most of the measurement (say height of a person) will be concentrated in 
the central peak. And there will be very few measurements that are very far off from the central 
point. Now these measurements are drawn from probability distribution which is basically a 
normal distribution. 
- X axis is the value of the random variable. 
- Y axis is the probability that it can take. 
- The peak is the mean or the average value. 
- Most of the measurement will be concentrated around the mean or average value. 
- The spread of the distributions is described by the standard deviation. 
- Mean and standard deviation are sufficient to completely describe the normal distribution. 
 
Normal Distribution is also called as gaussian distribution or bell curve. It plays a special role 
in statistic as many phenomena in natural life just follows the normal curve. Below are few data 
sets whose values are distributed normally. 

- Weights of a group of football players 

-The sizes of houses in a neighbourhood 
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- The IQs of a group of students. 

If we took all of the values of any of these data set and plot a histogram, then the resulting histo-
gram will look very much similar like below. Then if we draw a smooth curve through the histo-
gram, we will get a normal curve as shown. This normal curve is mathematically significant. 

 

Mean – The peak of this curve occurs at the MEAN and it is represented as µ. When a variable 
is normal, its value will most likely be close to the mean. 

Standard deviation - The spread of this curve is defined by the standard deviation represented 
as σ 
 
The normal distribution is entirely defined by 2 parameters µ & σ with the following formula. In 
other word, given the mean and SD, we can tell the probability of any value. 

 

Or  simply we can define as f(x) = F(x, μ, σ) 

If we know the mean, SD you can tell the probability of any value that can occur in the normal 
distribution. 

- Regardless of the actual values of mean and SD some characteristic remains same. 
- Probability that a value lies within 1 SD either direction from the mean is always 68% 
- Probability that a value lies within 2 SD in either direction from the mean is always 95% 
- Probability that a value lies within 3 SD in either direction from the mean is always 99.7% 

Above rule is very useful for 

1.Testing whether a distribution is NORMAL 

2. Finding outliners: Any values more than 3 σ away from the mean can be treated as outliers. 
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Sampling 

Let‟s take a Microbiologist who learn about Fish. Normally he does the following to learn about 
all fishes in the sea. 

1. Catch some fish. We refer this some fish as Sample and the process of catching some 

fish is called Sampling. 

2. Then he studies the caught fish. 

3. And finally draw conclusions about all the fish in the sea. We call all the fish in the sea 

as population and the process of drawing conclusions about the population by observing the 

sample is called Generalization. 

In simple word, Sampling means drawing conclusions about the population by observing the 
sample and generalizing. The conclusion which we draw is called inference. To draw meaning in-
ference, we learn few techniques and hypothesis testing. 

Below are few sampling use cases which are becoming very common across industry. 

- Phycological studies 
 
- Polling 
 
- Drug Trails 
 
- A/B Tests 
 
- Market Research Surveys 
 
Sample statistics – We describe the sample which is subset of the entire population using sam-
ple statistics. The sample statistics usually characterize the sample and not the population. 

Sample statistics can broadly classified into two type - 

1. Sample Mean - used when the variable is continuous like 
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   • Height of a group of people 

   • User engagement on a website 

2. Sample percentage – normally used when the variable is Binary (yes/no) like 
• Do you support this candidate? 

• Is this drug an effective treatment? 

Standard deviation (SD) of the sample is critical as it will allow us to determine the confidence 
interval around the assertion which we will manner. 

The manner in which we calculate the standard deviation of the sample is different for sample 
mean and sample percentage. 

Below shows standard deviation of the same when we are interested in sample mean 

Below shows standard deviation of the same when we are interested in sample percentage 

 

where p is the % of YESes   

Sample Statistics and Sampling Distribution 

Let us pick 100 different samples of any dataset from any population. For each of these samples, 

you then compute the sample mean or % as shown below. These computed sample mean or % 

will vary as it is different for each sample and hence, we call it as random variable. 
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If we plot the histogram of these values, that will represent its probability distribution. It turns 

out whenever you take a large number of samples, the sample % or sample mean of those sam-

ples follows a normal distribution. This normal distribution is also known as the sampling distri-

bution. 

 

Now we will see how to calculate sample mean and SD of the sampling distribution with one 
sample, as in near life we usually have limited samples. Sampling distribution of the standard de-
viation is termed as Standard error σ. 

 

The best estimate of a sample distribution‟s mean is its sample average ie, μ = x̄ 

For sample mean, σ = SD / SQRT (N), where N is the number of points in our datasets 

For Sample percentage, σ = SD 

So as of now, we have 

1. Sample mean 
2. Standard deviation of the sample 
3. Sample standard error 
Using these 3 numbers, we can now make assertion or inference about the population. Most of 
the inference falls under few specific types and there are standard procedures involved for each 
type to draw inference. Below are the inference types and an example for each types 

1. Identify the population mean 

- Indian Police are on average 80KG +/- 5 KG with 95% confidence 

2. Identify the population percentage 

- 20% +/- 2% of software engineers in a given city goes for morning walk 

3. Verify if population mean is equal to a certain value 
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- Is the average life expectancy of Indians is 70 years? 

4. Verify if population percentage is equal to a certain value 

- 20% of people who took the drug has a side effect 

5. Verify if 2 population means are different 

- Indians are on average taller than Chinese 

6. Verify if 2 population percentage are different 

- Only 10% of people who don‟t take the drug get better, but 80% of people who take the drug 
better. 

Descriptive Data Analysis using R > Description of Basic Functions used to Describe Data in R  

Basic Commands: 

builtins()  # List all built-in functions 

help() or ? or ??  #i.e. help(boxplot) 

getwd() and setwd()  # working with a file directory 

q()  #To close R 

ls()  #Lists all user defined objects. 

rm()  #Removes objects from an environment. 
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demo()  #Lists the demonstrations in the packages that are 

loaded. 

demo(package = .packages(all.available = 

TRUE))  

#Lists the demonstrations in all installed packages. 

options()  # Set options to control how R computes & displays re-

sults 

?NA  # Help page on handling of missing data values 

abs(x)  # The absolute value of "x" 

append()  # Add elements to a vector 

c(x)  # A generic function which combines its arguments 

cat(x)  # Prints the arguments 

cbind()  # Combine vectors by row/column (cf. "paste" in Unix) 

diff(x)  # Returns suitably lagged and iterated differences 



Data Visualization     Department of CSE 

MRCET  14 
 

gl()  # Generate factors with the pattern of their levels 

grep()  # Pattern matching 

identical()  # Test if 2 objects are *exactly* equal 

jitter()  # Add a small amount of noise to a numeric vector 

julian()  # Return Julian date 

length(x)  # Return no. of elements in vector x 

ls()  # List objects in current environment 

mat.or.vec()  # Create a matrix or vector 

paste(x)  # Concatenate vectors after converting to character 

range(x)  # Returns the minimum and maximum of x 

rep(1,5)  # Repeat the number 1 five times 
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rev(x)  # List the elements of "x" in reverse order 

seq(1,10,0.4)  # Generate a sequence (1 -> 10, spaced by 0.4) 

sequence()  # Create a vector of sequences 

sign(x)  # Returns the signs of the elements of x 

sort(x)  # Sort the vector x 

order(x)  # list sorted element numbers of x 

tolower(),toupper()  # Convert string to lower/upper case letters 

unique(x)  # Remove duplicate entries from vector 

system("cmd")  # Execute "cmd" in operating system (outside of R) 

vector()  # Produces a vector of given length and mode 

formatC(x)  # Format x using 'C' style formatting specifications 



Data Visualization     Department of CSE 

MRCET  16 
 

floor(x), ceiling(x), round(x), signif(x), trunc(x)  # rounding functions 

Sys.getenv(x)  # Get the value of the environment variable "x" 

Sys.putenv(x)  # Set the value of the environment variable "x" 

Sys.time()  # Return system time 

Sys.Date()  # Return system date 

getwd()  # Return working directory 

setwd()  # Set working directory 

?files  # Help on low-level interface to file system 

list.files()  # List files in a give directory 

file.info()  # Get information about files 

#  Built-in constants: 
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pi,letters,LETTERS  # Pi, lower & uppercase letters, e.g. letters[7] = "g" 

month.abb,month.name  # Abbreviated & full names for months 

Mathematics: 
 

log(x),logb(),log10(),log2(),exp(),expm1(),log1p(),sqrt()  # Fairly obvious 

cos(),sin(),tan(),acos(),asin(),atan(),atan2()  # Usual stuff 

cosh(),sinh(),tanh(),acosh(),asinh(),atanh()  # Hyperbolic functions 

union(),intersect(),setdiff(),setequal()  # Set operations 

+,-,*,/,^,%%,%/%  # Arithmetic operators 

<,>,<=,>=,==,!=  # Comparison operators 

eigen()  # Computes eigenvalues and eigenvectors 

deriv()  # Symbolic and algorithmic derivatives of 
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simple expressions 

integrate()  # Adaptive quadrature over a finite or infinite 

interval. 

sqrt(),sum()?Control  # Help on control flow statements (e.g. if, for, 

while) 

?Extract  # Help on operators acting to extract or re-

place subsets of vectors 

?Logic  # Help on logical operators 

?Mod  # Help on functions which support complex 

arithmetic in R 

?Paren  # Help on parentheses 

?regex  # Help on regular expressions used in R 

?Syntax  # Help on R syntax and giving the precedence 

of operators 

?Special  # Help on special functions related to beta 



Data Visualization     Department of CSE 

MRCET  19 
 

and gamma functions 

 
Graphical: 

help(package=graphics)  # List all graphics functions 

plot()  # Generic function for plotting of R objects 

par()  # Set or query graphical parameters 

curve(5*x^3,add=T)  # Plot an equation as a curve 

points(x,y)  # Add another set of points to an existing graph 

arrows()  # Draw arrows [see errorbar script] 

abline()  # Adds a straight line to an existing graph 

lines()  # Join specified points with line segments 

segments()  # Draw line segments between pairs of points 
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hist(x)  # Plot a histogram of x 

pairs()  # Plot matrix of scatter plots 

matplot()  # Plot columns of matrices 

?device  # Help page on available graphical devices 

postscript()  # Plot to postscript file 

pdf()  # Plot to pdf file 

png()  # Plot to PNG file 

jpeg()  # Plot to JPEG file 

X11()  # Plot to X window 

persp()  # Draws perspective plot 

contour()  # Contour plot 
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image()  # Plot an image 

 
Fitting/ Regression/ Optimization: 

lm  # Fit liner model 

glm  # Fit generalised linear model 

nls  # non-linear (weighted) least-squares fitting 

lqs  # "library(MASS)" resistant regression 

optim  # general-purpose optimisation 

optimize  # 1-dimensional optimisation 

constrOptim  # Constrained optimisation 

nlm  # Non-linear minimisation 

nlminb  # More robust (non-)constrained non-linear minimisation 

 
Statistical: 
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help(package=stats)  # List all stats functions 

?Chisquare  # Help on chi-squared distribution functions 

?Poisson  # Help on Poisson distribution functions 

help(package=survival)  # Survival analysis 

cor.test()  # Perform correlation test 

cumsum(); cumprod(); cummin(); cummax()  # Cumuluative functions for vectors 

density(x)  # Compute kernel density estimates 

ks.test()  # Performs one or two sample Kolmogorov-Smirnov 

tests 

loess(), lowess()  # Scatter plot smoothing 

mad()  # Calculate median absolute deviation 

mean(x), weighted.mean(x), median(x), min(x), # Generate random data with Gaussian/uniform dis-
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max(x), quantile(x) rnorm(), runif()  tribution 

splinefun()  # Perform spline interpolation 

smooth.spline()  # Fits a cubic smoothing spline 

sd()  # Calculate standard deviation 

 

The above screenshot shows some basic commands that you run in the console. You can run 
some simple arithmetic operations directly, assign values to variables, print them. Note that 
unlike other programming languages, R‟s assignment operator is “<-“. 

This is your very first step in learning R. Additionally you can learn how to install packages, load 
them and execute code/functions that are already defined in these functions. R has over 10000+ 
packages, each tailored for some specific use! 

As the name indicates, Descriptive Analysis is used to find and define the basic features of the 
data that is being studied. Descriptive Analysis provides simple summary about the sample data 
and the measures. Descriptive Analysis and Graphical Analysis are used together to form the ba-
sic virtual of any quantitative analysis of data. With descriptive analysis, you can describe what is 
the data or what the data is depicting. Description of data is needed to determine the normality 
of the distribution and because the techniques that need to be applied to infer data depends on 
the characteristics of the data. 

The dataset used for this analysis is mtcars. To start, install the required packages for the analysis. 
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The above data was obtained from the 1974 Motor Trend US magazine. It gives details about 
fuel consumption and 10 aspects of automobile design and performance for 32 automobiles 
(1973–74 models). 
 
This data set consists of 32 observations on 11 (numeric) variables, and the variables are: 

1. mpg      Miles/(US) gallon 

2. cyl         Number of cylinders 

3. disp      Displacement (cu.in.) 

4. hp         Gross horsepower 

5. drat       Rear axle ratio 

6. wt          Weight (1000 lbs) 

7. qsec       1/4 mile time 

8. vs           Engine (0 = V-shaped, 1 = straight) 

9. am         Transmission (0 = automatic, 1 = manual) 

10. gear     Number of forward gears 

11. carb     Number of carburetors 

 
Summary and Descriptive Statistics 

Descriptive (Summary) Analysis is the first figure used to represent nearly every dataset. This 
forms the foundation for further complicated computation and analysis. Therefore, it is essential 
to the analysis process. In this chapter, we will use R to calculate summary statistics, including 
mean, standard deviation, range, and percentile. We have also included the summary function, 
which is one of the most useful tools in the R set of commands. To start with, let us inspect the 
mtcars dataset. 

 
We observe that the rows of our dataset refer to mtcars. 
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ls(DATAVAR) or names(DATAVAR) 

To see the nature of variables/columns in the mtcars dataset, you can use the ls(DATAVAR) Or 
names(DATAVAR). See the following code for the sample. 

 

Mean of each variable (mean(DATAVAR) 

To calculate the mean of on an isolated variable, use the mean(VAR) command. VAR is the 
name of the variable whose mean you want to compute. You can also calculate, the mean for all 
the variables in the dataset using the mean(DATAVAR) function, where DATAVAR is the 
name of the dataset containing the variables. 
For analysis purposes, we will exclude the variables census and type from the descriptive statis-
tics. 
 
To select a subset of a dataset, use the subset(DATAVAR, select = c(“VAR1”, “VAR2”, 
“VAR3”….“VARi”)) command. 
 
NOTE: To know how to subset() vectors, matrices, and dataframes, type ?subset() in your R 
console and press ENTER. 
The code below demonstrates how to select a subset of Iris dataset. 
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Standard Deviation of each variable (sd(VAR)) 

Standard deviation is used to tell how measurements for a group are spread out from the average 
(mean), or expected value. There two types of Standard Deviations, A low standard deviation 
means that most of the numbers are close to the average. A high standard deviation means that 
the numbers are more spread out. 

To compute the standard deviation in R , use the command sd(VAR). Standard deviation meas-
ures how spread the data is. The following code shows the use of the standard 
deviation function: 
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Range of each variable: MINIMUM & MAXIMUM (min(VAR) & max(VAR)) 

Minimum can be computed on a single variable using the min(VAR) formula. Minimum and 
maximum give the min and max of individual variables in the dataset. The following code shows 
how to calculate minimums and maximums. 

 
PERCENTILES: VALUES from PERCENTILES (QUANTILE) 

A percentile (is also known as centile) is a measure in statistics. It shows the value below which a 
given percentage of observations falls. 

To understand the distribution of a set of observations, you must verify the quantiles. A quantile 
is a value computed from a collection of numeric measurements that indicates the rank of an ob-
servation when compared to all other observations. Quantile can be expressed as a percentile, 
this is identical but on a percent scale of 0 to 100. 
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To obtain quantiles and percentile in R use the quantile() function. The command is written as 
follows: 

quantile(VAR, c(PROB1, PROB2, PROB3,….PROBi)) or quantile(VAR, prob = c(prob value1, 
prob value 2, prob value 3…prob valuei)). 

 
PERCENTILES FROM VALUES (PERCENTILE RANK) 

To find a percentile rank corresponding to a given value, use must use a custom method. Fol-
lowing are the steps for computing a percentile rank:  
Count the number of data points that are at or below the given value Divide by the total number 
of data points multiple by 100 
 
To derive the formula to calculate a percentile rank, use the following command: 
 
percentile rank = length(VAR[VAR <= VALUE]) / length(VAR) * 100. length(VAR[VAR <= 
VALUE]) 
 
The command counts the number of data points in a variable that are below the given value.  
NOTE: You can replace „<=‟ with other operators, such as „<‟, „>‟, and =.length(VAR) counts 
the number of data points in the variable. 
The final step is to multiply the result by 100 to transform the decimal value into a percentage. 
 
Let us apply these steps in the following examples: 

 

Only 12.5% of cars in the data take less than 15.60 sec‟s to complete 1/4 mile. 

Summary Function (summary(x)) 
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Summary functions is used to produce a summary of all records in the found set, or subsummary 
values for records in different groups summary(x) is a very useful and multipurpose function in 
R. x can be any dataset, variable, linear model, and so on. The command provides summary data 
related to the object that was queried. The output of the function depends on the type of object 
that was queried. It is very useful because it can be used to summarize the previous actions. The 
result caters to the requirements of summary statistics. In the following examples, we have ap-
plied the command to the sample dataset. 
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UNIT – II 

 

 

 

Data Manipulation with R > Introduction to dplyr (filter, select, arrange, mutate, sum-
marize) > Introduction to dplyr (filter, select, arrange, mutate, summarize) 

When it comes to Predictive Modeling, data Manipulation is an important and unavoidable 
phase. Machine learning algorithms are just not sufficient to build a robust predictive model. The 
approach must be to understand the business problem, the data, performing data manipulations, 
and then extracting business insights. Majority of time is spent in understanding the data and 
manipulating data as required. In this chapter we shall look at the details of Data Manipulation. 
 
Data Manipulation is also called as Data Exploration (also known as Data Wrangling or Data 
Cleaning). Data Manipulation is done to improve data accuracy and precision. Data Manipulation 
is a mandatory step when it comes to predictive modeling because of the many faults in data col-
lection process, because of many uncontrollable factors involved in data collection. 
 
In reality, there is no right or wrong way to do Data Manipulation. However, you have to under-
stand the data and must take necessary steps to improve the accuracy. Following are some of the 
points you need to consider for Data Manipulation: 

 You can use the inbuilt functions in R to manipulate data. Though it is a good step to 

start with initially, it is not very efficient, because you must be repeating the process and it is also 

time consuming. 

 You can use the packages available in CRAN. As these packages are tried and tested, they 

are more efficient. Using the CRAN packages is the most widely accepted industry way of doing 

Data Manipulation. 

 You can also use ML algorithms. For example, tree based boosting algorithms take care 

of missing data and outliers. Though time-efficient, you will need to have a very thorough under-

standing of data. 

dplyr Package 

dplyr is a powerful R-package which transforms and summarizes tabular data with rows and col-
umns. It is best known for data exploration and transformation. Its chaining syntax makes it 
highly adaptive to use. It includes 5 major data manipulation commands: 

 filter – filters the data based on a condition 

 select –used to select columns of interest from a data set 

Data manipulation withR: Data manipulation packages-dplyr,data.table, reshape2, 

tidyr, Lubridate, Data visualization withR. 

Data visualization in Watson Studio: Adding data to datarefinery, Visualization of 

Data on WatsonStudio. 
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 arrange –used to arrange data set values on ascending or descending order 

 mutate – used to create new variables from existing variables 

 summarise (with group_by) – used to perform analysis by commonly used operations 

such as min, max, mean count etc. 

Filter rows with filter() 

You can use the filter() command to select a subset of rows in a data frame. Similar to all single 
verbs, the first argument is the tibble (or data frame). The subsequent arguments refer to vari-
ables within that data frame, selecting rows where the expression is TRUE. 
 
In this example, we will be using another dataset, this dataset is a public data set. As mentioned 
in the Wikipedia, The Iris flower data set or Fisher's Iris data set is a multivariate data set intro-
duced by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multi-
ple measurements in taxonomic problems as an example of linear discriminant analysis. It is 
sometimes called Anderson's Iris data set because Edgar Anderson collected the data to quantify 
the morphologic variation of Iris flowers of three related species. Two of the three species were 
collected in the Gaspé Peninsula "all from the same pasture, and picked on the same day and 
measured at the same time by the same person with the same apparatus". 
 
The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica 
and Iris versicolor). Four features were measured from each sample: the length and the width of 
the sepals and petals, in centimeters. Based on the combination of these four features, Fisher de-
veloped a linear discriminant model to distinguish the species from each other. 

To install dplyr, use the below command 

install.packages("dplyr") 
 
To load dplyr, use the below command 

library(dplyr) 
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Select columns with select() 

When you are working with large datasets with many columns, but you are actually interested in 
a few, select() allows you to rapidly zoom in on a useful subset using operations that usually only 
work on numeric variable positions: 
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Data Visualization     Department of CSE 

MRCET  36 
 

 

Arrange rows with arrange() 

arrange() re-orders the rows. It takes a data frame, and a set of column names (or more compli-
cated expressions) to order the rows. If you provide more than one column name, each addi-
tional column is used to break ties in the values of preceding columns. 
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Add new columns with mutate() 

This function, mutate() adds new variables while preserving the existing ones. mutate() is used to 
select sets of existing columns and add new columns that are functions of existing columns. Fol-
lowing is the example: 

 

Summarise values with summarise() 

The summarise() collapses a data frame to a single row. 
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data.table Package 

A data table is nothing but a group of related facts arranged in labeled rows and columns and is 
used to record information. data.table can be used to perform faster manipulation in a data set. 
Using data.table reduces computing time when compared to data.frame. A data table has 3 parts 
namely DT[i,j,by]. Here, we are instructing R to subset the rows using „i‟, to calculate „j‟ which is 
grouped by „by‟. Most of the times, „by‟ relates to categorical variable. In the code below, we 
have used 2 data sets (airquality and iris). 
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reshape2 Package 

reshape2 is an R package, was written by Hadley Wickham which makes it easy to transform data 
between wide and long formats. Use the reshape2 package to reshape your data. Using the re-
shape2 package, we can combine features that have unique values. It has 2 functions namely melt 
and cast. 
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 melt: Converts data from wide format to long format. It is a form of restructuring where 

multiple categorical columns are „melted‟ into unique rows. Let us understand it using the code 

below. 

 

 

 cast: converts data from long format to wide format. It starts with melted data and re-

shapes into long format. It‟s the reverse of melt function. It has two functions 

namely, dcast and acast. 

-dcast returns a data frame as output. 
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-acast returns a vector/matrix/array as the output. 

Let‟s understand it using the code below. 

 

readr Package 

The readr package is also developed by Hadley Wickham to deal with reading in large flat files 
quickly. 

„readr‟ is used to read various forms of data in R. It is very fast. The characters are not converted 
to factors. Therefore, you don‟t set stringAsFactors = FALSE. It helps in reading the following 
data: 

 Delimited files with read_delim(), read_csv(), read_tsv(), and read_csv2(). 

 Fixed width files with read_fwf(), and read_table(). 
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 Web log files with read_log() 

If the data loading time is more than 5 seconds, this function displays a progress bar. 
Let‟s look at the code below: 

 

tidyr Package 

tidyr is a package which was developed by Hadley Wickham which makes it easy to tidy your 
data. 
 

To make the data look neat and tidy, use the tidyr package. The package has 4 major functions. 
You can use these functions if you are stuck in the data exploration phase, along with dplyr. 
 

 gather() – „gathers‟ multiple columns and converts them into key:value pairs. This func-

tion transforms wide form of data to long form. It can be used as an alternative to „melt‟ in re-

shape package. 

 

 spread() – Does reverse of gather. It accepts a key:value pair and converts it into separate 

columns. 
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 separate() – Splits a column into multiple columns. 

 

 unite() – Does reverse of separate. It unites multiple columns into single column 

 

 

Use the Separate function when you have date time variable in the data set. Because a column 
contains multiple information, it makes sense to split it and use those values individually. The 
following code shows the usage of the Separate function: 
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Lubridate Package 

Lubridate package, makes it easier to work with dates and times. 

Use the Lubridate package to reduce the issues related to working of data time variable in R. The 
inbuilt function of this package helps in easy parsing in dates and times. Lubridate is used with 
data comprising of timely data. 

Following are three basic tasks that are accomplished using Lubridate – The update, duration 
function, and data extraction functions. 
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Working with Base R Graphics (Scatter Plot, Bar Plot, and Histogram) 

ggplot2 Package 

ggplot2 offers a wide range of colors and patterns. To understand what is necessary to get 

started, follow the codes below. You must be proficient with plotting at least 3 graphs – Scatter 

Plot, Bar Plot, and Histogram. 

 

Scatter Plot : 

A Scatter Plot is a graph in which the values of two variables are plotted along two axes, the pat-

tern of the resulting points revealing any correlation present. 

With scatter plots we can explain how the variables relate to each other. Which is defined as cor-

relation. Positive, Negative, and None (no correlation) are the three types of correlation. 

 

Limitations of a Scatter Diagram 
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Below are the few limitations of a scatter diagram: 

• With Scatter diagrams we cannot get the exact extent of correlation. 

• Quantitative measure of the relationship between the variable cannot be viewed. Only shows 

the quantitative expression. 

• The relationship can only show for two variables. 

 

Advantages of a Scatter Diagram 

Below are the few advantages of a scatter diagram: 

Relationship between two variables can be viewed. For non-linear pattern, this is the best 

method. Maximum and minimum value, can be easily determined. 

Observation and reading is easy to understand. Plotting the diagram is very simple. 

Bar Plot : A barplot (or barchart) is one of the most common type of graphic. It shows the rela-

tionship between a numeric variable and a categoric variable. 

Bar Plot are classified into four types of graphs - bar graph or bar chart, line graph, pie chart, and 

diagram. 

Limitations of Bar Plot: When we try to display changes in speeds such as acceleration, Bar 

graphs wont help us. 

Advantages of Bar plot: 

 Bar charts are easy to understand and interpret. 

 Relationship between size and value helps for in easy comparison. 

 They're simple to create. 

 They can help in presenting very large or very small values easily. 

 

Histogram 

A histogram represents the frequency distribution of continuous variables. while, a bar graph is a 

diagrammatic comparison of discrete variables. Histogram presents numerical data whereas bar 

graph shows categorical data. The histogram is drawn in such a way that there is no gap between 

the bars. 
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Limitations of Histogram: 

A histogram can present data that is misleading as it has many bars. 

Only two sets of data are used, but to analyze certain types of statistical data, more than two sets 

of data are necessary  

Advantages of Histogram: Histogram helps to identify different data, the frequency of the data 

occurring in the dataset and categories which are difficult to interpret in a tabular form. It helps 

to visualize the distribution of the data. 

lements of ggplot2 

Data: The data-set for which we would want to plot a graph. 

Aesthetics: The metrics onto which we plot our data, we can map xaxis, yaxis, fill, col, shape, 
size. 

Geometry: Visual Elements to plot the data. 

Facet: Groups by which we divide the data. 

Working with Base R Graphics 
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WATSON STUDIO 

Watson Studio provides you with the environment and tools to solve your business problems by 
collaboratively working with data. You can choose the tools you need to analyze and visualize 
data, to cleanse and shape data, to ingest streaming data, or to create and train machine learning 
models. 

This illustration shows how the architecture of Watson Studio is centered around the project. A 
project is where you organize your resources and work with data. 

 

Visualizing information in graphical ways can give you insights into your data. By enabling you to 
look at and explore data from different perspectives, visualizations can help you identify pat-
terns, connections, and relationships within that data as well as understand large amounts of in-
formation very quickly. 
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Create a project - 

To create a project : 

 Click New project on the Watson Studio home page or your My Projects page. 

 Choose whether to create an empty project or to create a project based on an exported 

project file or a sample project. 

 If you chose to create a project from a file or a sample, upload a project file or select a 

sample project. See Importing a project. 

 On the New project screen, add a name and optional description for the project.             

                                                                                            

 Select the Restrict who can be a collaborator check box to restrict collaborators to mem-

bers of your organization or integrate with a catalog. The check box is selected by default if you 

are a member of a catalog. You can‟t change this setting after you create the project. 

 If prompted, choose or add any required services. 

 Choose an existing object storage service instance or create a new one. 

 Click Create. You can start adding resources if your project is empty or begin working 

with the resources you imported. 

 

To add data files to a project: 

 From your project‟s Assets page, click Add to project > Data or click the Find and add 

data icon ().You can also click the Find and add data icon from within a notebook or canvas. 
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 In the Load pane that opens, browse for the files or drag them onto the pane. You must 

stay on the page until the load is complete. You can cancel an ongoing load process if you want 

to stop loading a file. 

 

Case Study: 

Let us take the Iris Data set to see how we can visualize the data in Watson studio. 
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Adding Data to Data Refinery 

Visualizing information in graphical ways can give you insights into your data. By enabling you to 
look at and explore data from different perspectives, visualizations can help you identify pat-
terns, connections, and relationships within that data as well as understand large amounts of in-
formation very quickly. You can also visualize your data with these same charts in an SPSS Mod-
eler flow. Right-click a node and select Profile. 

 

To visualize your data: 

 From Data Refinery, click the Visualizations tab. 

 Start with a chart or select columns.       
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1. Click any of the available charts. Then add columns in the DETAILS panel that 

opens on the left side of the page. 

2. Select the columns that you want to work with. Suggested charts will be indicated 

with a dot next to the chart name. Click a chart to visualize your data.    

Click on refine 

 

Click on Visualization tab: 

 

Add the columns by selecting. 
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Visualization of Data on Watson Studio 

Select Scatter plot: 
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Various types of option to visualize the data: 

 

Select Histogram and select the x axis and y axis : 
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UNIT – III 

 

 

 

 

Python and Anaconda Installation  

Introduction to Anaconda - 

Anaconda is a package manager, an environment manager, and Python distribution that contains 
a collection of many open source packages. 

This is advantageous as when you are working on a data science project, you will find that you 
need many different packages (NumPy, scikit-learn, SciPy, pandas to name a few), which an in-
stallation of Anaconda comes preinstalled with. If you need additional packages after installing 
Anaconda, you can use Anaconda's package manager, conda, or pip to install those packages. 

This is highly advantageous as you don't have to manage dependencies between multiple pack-
ages yourself. Conda even makes it easy to switch between Python 2 and 3. 

Anaconda Installation - 

 Go to the Anaconda Website and choose a Python 3.x graphical installer (A) or a Python 

2.x graphical installer. 

 

When the screen below appears, click on Next 

Python: Introduction toPython, How toInstall, Introduction to JupyterNotebook, 

Python scriptingbasics, Numpy andPandas-Creating and Accessing Numpy Ar-

rays, Introduction to pandas, read and write csv, Descriptive statistics using pan-

das, Working with text data and datetime columns, Indexing and selecting data, 

groupby, Merge / Join datasets 
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Click on Next. 
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Note your installation location and then click Next. 

 

Choose whether to add Anaconda to your PATH environment variable. We recommend not 

adding Anaconda to the PATH environment variable, since this can interfere with other soft-

ware. Instead, use Anaconda software by opening Anaconda Navigator or the Anaconda Prompt 

from the Start Menu. 

 

After that click on next. 

 

Click Finish. 
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We need to set anaconda path to system environmental variables. 

Open a Command Prompt. Check if you already have Anaconda added to your path. 

Enter the commands below into your Command Prompt. 

Conda –version 

Python –version 

This is checking if you already have Anaconda added to your path. If you get a command not 

recognized, then we need to set Anaconda path 

If you don't know where your conda and/or python is, open an Anaconda Prompt and type in 

the following commands. This is telling you where conda and python are located on your com-

puter. 

 

Add conda and python to your PATH. You can do this by going to your System Environment 

Variables and adding the output of step 3 (enclosed in the red ) 
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Open a new Command Prompt. Try typing conda --version and python --version into 

the Command Prompt to check to see if everything went well. 

 

Conda installation is successful 

Introduction to Jupyter Notebook  

What is Jupyter 

The Jupyter Notebook is an open source web application that you can use to create and share 
documents that contain live code, equations, visualizations, and text. Jupyter Notebook is main-
tained by the people at Project Jupyter. 

Jupyter Notebooks are a spin-off project from the IPython project, which used to have an IPy-
thon Notebook project itself. The name, Jupyter, comes from the core supported programming 
languages that it supports: Julia, Python, and R. Jupyter ships with the IPython kernel, which al-
lows you to write your programs in Python, but there are currently over 100 other kernels that 
you can also use. 

How to access Jupyter Notebook 

Installing Anaconda Distribution will also include Jupyter Notebook. 
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To access the Jupyter Notebook go to anaconda prompt and run below command 

 

Or go to Command Prompt and first activate root before launching jupyter notebook 

 

Then you'll see the application opening in the web browser on the following address: 

http://localhost:8888. 

 

 

 

http://localhost:8888/
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Python Scripting Basics 

First Program in Python 

Let‟s try your first program in Python. 

 

A statement or expression is an instruction the computer will run or execute. Perhaps the sim-
plest program you can write is a print statement. When you run the print statement, Python will 
simply display the value in the parentheses. The value in the parentheses is called the argument. 

If you are using a Jupiter notebook in this course, you will see a small rectangle with the state-
ment. This is called a cell. If you select this cell with your mouse, then click the run cell button. 
The statement will execute. The result will be displayed beneath the cell. 

 

It‟s customary to comment your code. This tells other people what your code does. You simply 
put a hash symbol preceding your comment. When you run the code, Python will ignore the 
comment. 

Data Types 

A type is how Python represents different types of data. You can have different types in Python. 
They can be integers like 11, real numbers like 21.213. They can even be words. 
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The following chart summarizes three data types for the last examples. The first column indi-
cates the expression. The second Column indicates the data type. We can see the actual data type 
in Python by using the type command. We can have int, which stands for an integer, and float 
that stands for float, essentially a real number. The type string is a sequence of characters. 

Integers can be negative or positive. It should be noted that there is a finite range of integers, but 
it is quite large. Floats are real numbers; they include the integers but also numbers in between 
the integers. Consider the numbers between 0 and 1. We can select numbers in between them; 
these numbers are floats. Similarly, consider the numbers between 0.5 and 0.6. We can select 
numbers in-between them; these are floats as well. 

We can continue the process, zooming in for different numbers. Of course, there is a limit, but it 
is quite small. You can change the type of the expression in Python; this is called type-casting. 
You can convert an int to a float. For example, you can convert or cast the integer 2 to a float 2. 

 

Nothing really changes. If you cast a float to an integer, you must be careful. For example, if you 
cast the float 1.1 to 1, you will lose some information. If a string contains an integer value, you 
can convert it to int. If we convert a string that contains a non-integer value, we get an error. 
You can convert an int to a string or a float to a string. 
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Boolean is another important type in Python. A Boolean can take on two values. The first value 
is true, just remember we use an uppercase T. Boolean values can also be false, with an upper-
case F. Using the type command on a Boolean value, we obtain the term bool, this is short for 
Boolean. If we cast a Boolean true to an integer or float, we will get a 1. 

If we cast a Boolean false to an integer or float, we get a zero. If you cast a 1 to a Boolean, you 
get a true. Similarly, if you cast a 0 to a Boolean, you get a false. 

 

String Operations In Python 

In Python, a string is a sequence of characters. A string is contained within two quotes: You 
could also use single quotes. A string can be spaces, or digits. A string can also be special charac-
ters. We can bind or assign a string to another variable. It is helpful to think of a string as an or-
dered sequence. Each element in the sequence can be accessed using an index represented by the 
array of numbers. The first index can be accessed as 

 

follows. We can access index 6. Moreover, we can access the 13th index. We can also use nega-
tive indexing with strings. The last element is given by the index -1. The first element can be ob-
tained by index -15, and so on. 

 



Data Visualization     Department of CSE 

MRCET  71 
 

We can bind a string to another variable. It is helpful to think of string as a list or tuple. We can 
treat the string as a sequence and perform sequence operations. We can also input a string value 
as follows. The 2 indicates we select every second variable. We can also incorporate slicing. 

 

In this case. we return every second value up to index four. We can use the “Len” command to 
obtain the length of the string. As there are 15 elements, the result is 15. 

 

We can concatenate or combine strings. We use the addition symbols. The result is a new string 
that is a combination of both. 

We can replicate values of a string. We simply multiply the string by the number of times we 
would like to replicate it, in this case, three. The result is a new string. The new string consists of 
three copies of the original string. This means you cannot change the value of the string, but you 
can create a new string. 

Python COLLECTION (or)Arrays  

There are four collection data types in the Python programming language: 

 Tuple is a collection which is ordered and unchangeable. Allows duplicate members. 

 List is a collection which is ordered and changeable. Allows duplicate members. 

 Set is a collection which is unordered and unindexed. No duplicate members. 
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 Dictionary is a collection which is unordered, changeable and indexed. No duplicate mem-

bers. 

Tuple: 
tuples are expressed as comma-separated elements within parentheses. 

 

In Python, there are different types: strings, integer, float. They can all be contained in a tuple, 
but the type of the variable is tuple 

Each element of a tuple can be accessed via an index. The element in the tuple can be accessed 
by the name of the tuple followed by a square bracket with the index number. Use the square 
brackets for slicing along with the index or indices to obtain value available at that index. 

Tuples are immutable, which means we can't change them. 
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To see why this is important, let's see what happens when we set the variable Ratings 1 to rat-
ings. Each variable does not contain a tuple, but references the same immutable tuple object. 

 

Let's say we want to change the element at index 2. Because tuples are immutable, we can't. 
Therefore, Ratings 1 will not be affected by a change in Rating because the tuple is immutable 
i.e., we can't change it. 

We can assign a different tuple to the Ratings variable. The variable Ratings now references an-
other tuple. 

 

There are many built-in functions that take tuple as a parameter and perform some task. for ex-
ample, we can find length of the tuple with len () function, minimum value with min () func-
tion... etc. 

if we would like to sort a tuple, we use the function sorted. The input is the original tuple. The 
output is a new sorted tuple. 

A tuple can contain other tuples as well as other complex data types; this is called nesting. 
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For Example: NestedTuple = (5,2, ("A","B"),(1,2),(8896,("x","y","z"))) 

We can access these elements using the standard indexing methods. 

 

For example, we could access the second element. We can apply this indexing directly to the tu-
ple variable NT. It is helpful to visualize this as a tree. We can visualize this nesting as a tree. The 
tuple has the following indexes. If we consider indexes with other tuples, we see the tuple at in-
dex 2 contains a tuple with two elements. We can access those two indexes. The same conven-
tion applies to index 3. We can access the elements in those tuples as well. We can continue the 
process. We can even access deeper levels of the tree by adding another square bracket like 
NestedTuple [4][1]. 

List: 

A list is a collection which is ordered and changeable. A list is represented with square brackets. 
In many respects‟ lists are like tuples, one key difference is they are mutable. Lists can contain 
strings, floats, integers We can nest other lists. 
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We can also nest tuples and other data structures; the same indexing conventions apply for nest-
ing Like tuples, each element of a list can be accessed via an index. 

 

 

The following table represents the relationship between the index and the elements in the list. 
The first element can be accessed by the name of the list followed by a square bracket with the 
index number, in this case zero. We can access the second element as follows. We can also ac-
cess the last element. In Python, we can use a negative index. 

The index conventions for lists and tuples are identical for accessing and slicing the elements. 

We can concatenate or combine lists by adding them. Lists are mutable; therefore, we can change 
them. For example, we apply the method Extends by adding a "dot" followed by the name of the 
method, then parenthesis. 
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The argument inside the parenthesis is a new list that we are going to concatenate to the original 
list. In this case, instead of creating a new list, the original list List1 is modified by adding four 
new elements. 

Another similar method is append. If we apply append instead of extended, we add one element 
to the list. If we look at the index, there is only one more element. Index 4 contains the list we 
appended. 

Every time we apply a method, the lists changes. 
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As lists are mutable, we can change them. For example, we can change the Second element as 
follows. The list now becomes [ 1,” CHANGED”,3,4] 

We can delete an element of a list using the "del" command; we simply indicate the list item we 
would like to remove as an argument. 

For example, if we would like to remove the Second element, then perform del List [1] com-
mand This operation removes the second element of the list then the result becomes [1,3,4] 

LISTS: Aliasing 

When we set one variable, B equal to A, both A and B are referencing the same list. Multiple 
names referring to the same object is known as aliasing. 

 

If we change the first element in “A” to “banana” we get a side effect; the value of B will change 
as a consequence. “A" and “B” are referencing the same list, therefore if we change "A“, list "B" 
also changes. If we check the first element of B after changing list ”A” we get banana instead of 
hard rock 
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You can clone list “A” by using the following syntax. Variable "A" references one list. Variable 
“B” references a new copy or clone of the original list. 

 

Now if you change “A”, "B" will not change We can get more info on lists, tuples and many 
other objects in Python using the help command. 

Simply pass in the list, tuple or any other Python object example: help(list),help(tuple)..etc. 

Set: 

Sets are a type of collection. Unlike lists and tuples, they are unordered. You cannot access items 
in a set by referring to an index, since sets are unordered the items has no index. To define a set, 
you use curly brackets You place the elements of a set within the curly brackets. 

You notice there are duplicate items. When the actual set is created, duplicate items will not be 
present. 

To add one item to a set, use the add () method. 

To add more than one item to a set use the update () method with list of values. 

To remove an item from the set we can use the pop () method. Remember sets are unordered so 
it will remove the first item in the set. 

To remove an item from the set, use the remove method, we simply indicate the set item we 
would like to remove as an argument. 
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There are lots of useful mathematical operations we can do between sets. like union, intersection, 
difference, symmetric difference from two sets. 

DICTIONARIES: 

Python dictionary is an unordered collection of items. While other compound data types have 
only value as an element, a dictionary has a key: value pair. Dictionaries are optimized to retrieve 
values when the key is known. Creating a dictionary is as simple as placing items inside curly 
braces {} separated by comma. An item has a key and the corresponding value expressed as a 
pair, key: value. While values can be of any data type and can repeat, keys must be of immutable 
type (string, number or tuple with immutable elements) and must be unique. 

 

We can access the elements from the dictionary using keys. 
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We can get the value using keys either inside square brackets or with get( ) method. 

Dictionary is mutable. We can add new items or change the value of existing items using assign-
ment operator. If the key is already present, value gets updated, else a new key: value pair is 
added to the dictionary. 

 

We can delete an entry as follows. This gets rid of the key "address" and its value from my_dict 
dictionary. 

 

We can verify if an element is in the dictionary using the in command as follows. 

Syntax: „KEY_NAME‟ in DictionaryName 
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The command checks the keys. If they are in the dictionary, they return a true. If we try the same 
command with a key that is not in the dictionary, we get a false. If we try with another key that is 
not in the dictionary, we get a false. 

 

In order to see all the keys in a dictionary, we can use the method keys to get the keys. The out-
put is a list like object with all keys. In the same way, we can obtain the values. 

 

Conditional Statements 
What is Control or Conditional Statements - 

In programming languages, most of the time we have to control the flow of execution of your 
program, you want to execute some set of statements only if the given condition is satisfied, and 
a different set of statements when it‟s not satisfied. Which we also call it as control statements or 
decision-making statements. 

Conditional statements are also known as decision-making statements. We use these statements 
when we want to execute a block of code when the given condition is true or false. 

Usually Condition will be in a form of Expression with some relational operators. Refer some 
below operators mentioned in the chart 
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In Python we achieve the decision-making statements by using below statements - 

 If statements 

 If-else statements 

 Elif statements 

 Nested if and if-else statements 

If statements - 

If statement is one of the most commonly used conditional statement in most of the program-
ming languages. It decides whether certain statements need to be executed or not. If statement 
checks for a given condition, if the condition is true, then the set of code present inside the if 
block will be executed. 

The If condition evaluates a Boolean expression and executes the block of code only when the 
Boolean expression becomes TRUE. Check the Syntax first the controller will come to an if 
condition and evaluate the condition if it is true, then the statements will be executed, otherwise 
the code present outside the block will be executed. 

 

Let‟s take an example to implement the if statement, in this example we have a variable name 
which stores the string “Srikar” and we also have names list with some names 
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We can use if statement to check whether the name is present in the names list or not, if condi-
tion is true then it will also print block of statements inside the „if‟ block. If condition is false, 
then it will skip the execution of the „if‟ block statements. 

If-else statements: 

The statement itself tells that if a given condition is true then execute the statements present in-
side if block and if the condition is false then execute the else block. 

Else block will execute only when the condition becomes false, this is the block where you will 
perform some actions when the condition is not true. 

If-else statement evaluates the Boolean expression and executes the block of code present inside 
the if block if the condition becomes TRUE and executes a block of code present in the else 
block if the condition becomes FALSE. 

 

Let‟s take an example to implement the if-else statement, in this example the if block will get 
executed if the given condition is true or else it will execute the else block. 
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elif statements: 

In python, we have one more conditional statement called elif statements. Elif statement is used 
to check multiple conditions only if the given if condition false. It's like an if-else statement and 
the only difference is that in else we will not check the condition but in elif we will do check the 
condition. 

 

Elif statements are similar to if-else statements but elif statements evaluate multiple conditions. 
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Let‟s take an example to implement the elif statement, in this example the if block will get exe-
cuted if the given if-condition is true, or elif block will get executed if the elif-condition is true, 
or it will execute the else block if both if and elif conditions are false. 

Nested if-else statements 

Nested if-else statements mean that an if statement or if-else statement is present inside another 
if or if-else block. Python provides this feature as well, this in turn will help us to check multiple 
conditions in a given program. An if statement present inside another if statement which is pre-
sent inside another if statements and so on. 

 

 

Numpy and Pandas > Numpy overview - Creating and Accessing Numpy Arrays > Numpy overview - Creating and Accessing 
Numpy Arrays 

What is numpy ? 

NumPy is the fundamental package for scientific computing in Python. It is a Python library that 
provides a multidimensional array object, various derived objects (such as masked arrays and ma-
trices), and an assortment of routines for fast operations on arrays, including mathematical, logi-
cal, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, 
basic statistical operations, random simulation and much more. 
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Difference between numpy arrays and lists 

 There are several important differences between NumPy arrays and the standard Python se-

quences, NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dy-

namically). 

 The elements in a NumPy array are all required to be of the same data type, and thus will be 

the same size in memory. The exception: one can have arrays of (Python, including NumPy) ob-

jects, thereby allowing for arrays of different sized elements. 

 NumPy arrays facilitate advanced mathematical and other types of operations on large num-

bers of data. Typically, such operations are executed more efficiently and with less code than is 

possible using Python‟s built-in sequences. 

CREATING NUMPY 1D ARRAY 

A "numpy" array or "ndarray" is similar to a list. It's usually fixed in size and each element is of 
the same type, we can cast the list to numpy array by first importing the numpy. Or We can also 
quickly create the numpy array with arange function which creates an array within the range 
specified. 

To verify the dimensionality of this array, use the shape property. 

In example Since there is no value after the comma (20,) this is a one-dimensional array. 
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Accessing NUMPY 1D ARRAY 

 

Accessing and slicing operations for 1D array is same as list. Index values starts from 0 to length 
of the list. 

Creating numpy 2D ARRAY 

If you only use the arrange function, it will output a one-dimensional array. To make it a two-
dimensional array, chain its output with the reshape function. 

In this example first, it will create the 15 integers and then it will convert to two dimensional ar-
ray with 3 rows and 5 columns. 

 

Accessing NUMPY 2D ARRAY 

To access an element in a two-dimensional array, you need to specify an index for both the row 
and the column. 
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Introduction to Pandas 
What are pandas ? 

Pandas is an open-source Python Library providing high-performance data manipulation and 
analysis tool using its powerful data structures. Pandas is the backbone for most of the data pro-
jects. 

Through pandas, you get acquainted with your data by cleaning, transforming, and analyzing it. 
Python with Pandas is used in a wide range of fields including academic and commercial do-
mains including finance, economics, Statistics, analytics, etc. 

We can import the library or a dependency like pandas using the “import pandas” command. 
We now have access to many pre-built classes and functions. 

In order to be able to work with the data in Python, we‟ll need to read the data(csv, excel 
,dictionary,..) file into a Pandas DataFrame. A DataFrame is a way to represent and work with 
tabular data. Tabular data has rows and columns, just like our csv file. In order to read in the 
data, we‟ll need to use the pandas.read_csv function. This function will take in a csv file and re-
turn a DataFrame. 

What is csv ? 

csv stands for comma-separated values, csv file is a delimited text file that uses a comma to sepa-
rate values. A CSV file stores tabular data in plain text. Each line of the file is a data record. Each 
record consists of one or more fields, separated by commas. 

How to read the csv file using pandas 

Once the pandas library is imported, This assumes the library is installed. Then we can load a csv 
file using the pandas built-in function “read csv.” A csv is a typical file type used to store data. 
 
We simply type the word pandas, then a dot and the name of the function with all the inputs. 
Typing pandas all the time may get tedious.  



Data Visualization     Department of CSE 

MRCET  89 
 

We can use the "as" statement to shorten the name of the library; in this case we use the stan-
dard abbreviation pd. Now we type pd and a dot followed by the name of the function we would 
like to use, in this case, read_csv. 

 

we need to give the path of the csv file as argument to the read_csv function, to read the path 
string correctly we need to use „r‟ as a prefix to the command. The result is stored in the variable 
df. this is short for “dataframe." Now that we have the data in a dataframe, we can work with it. 
We can use the method head to see the entire data frame or we can pass the number of rows to 
be checked as an argument to the head method like df.head(5) for 5 rows. 

How to Write the csv file using pandas 

If you want to write the dataframe to csv we can simple use the “to_csv” function 

Syntax: 
df.to_csv(EXPORT FILE PATH) 

example: 
If you see the above data frame example we see the two indexes one is loaded from the csv file 
and also there is unnamed index which is by default generated by pandas while loading the csv. 
This problem can be avoided by making sure that the writing of CSV files 
doesn‟t write indexes, because DataFrame will generate it anyway. We can do the same by speci-
fying index = False parameter in to_csv(...) function. 

df.to_csv(„EXPORT FILE PATH‟, index=False) 

Descriptive statistics using pandas 

There are many collective methods to compute descriptive statistics and other related operations 
on pandas DataFrame. Steps TO FOLLOW FOR Descriptive Statistics.  

These are the three steps we should perform to do statistical analysis on pandas dataframe. 

 collect the data 
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 create the data frame 

 get the descriptive statistics for pandas dataframe 

Collect the data: 
 
To do any statistical analysis, first collection of data is the important task 
 
You can store the collected data in csv, excel, or in dictionary format. For Demo we store the 
home data in one csv file. 

Create the data frame: 

we need to create the data frame based on the data collected. 

Give the homes csv file path location. 

 

Once you run the above code you will get this DataFrame. 

Get the Descriptive Statistics for Pandas DataFrame 

Once you have your Data Frame ready, you‟ll be able to get the Descriptive Statistics. We can 
calculate the following statistics using the pandas package: 

 Mean 

 Total sum 

 Maximum 

 Minimum 

 Count 

 Median 
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 Standard deviation 

 Variance 

With describe function you will get complete descriptive stats 
 
The syntax is: df.describe() 

 

You can further breakdown the descriptive statistics into the following measures: 
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Pandas working with text data and datetime columns 

While working with data, it is not an unusual thing to encounter time series data. Working with 
datetime columns can be quite challenge task. Luckily, pandas are great at handling time series 
data. Pandas provide a different set of tools using which we can perform all the necessary tasks 
on date-time data. 
 
Let‟s see how we can convert a dataframe column of strings (in dd/mm/yyyy format) to 
datetime format. We cannot perform any time series-based operation on the dates if they are not 
in the right format. To be able to work with it, we are required to convert the dates into the 
datetime format. 
 
Convert Pandas dataframe column type from string to datetime format 
 
For any operation we need to first create the data frame based on the data collected, we can load 
the data either from csv file, or excel file or from any source. Let us use csv file for our demo. 
 
Follow the below lines of code to load the data and convert that to data Frame. 
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Once the data frame is ready use df.info( ) to get complete information of dataframe. 

 

As we can see in the output, the data type of the „DateTime‟ column is object i.e. string. Now we 
will convert it to datetime format using pd.to_datetime() function. 

 

After applying the pd.to_datetime () function to DateTime column, we can see in the output, the 
format of the „DateTime‟ column has been changed to the datetime format. 
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HOW TO CHANGE THE INDEX OF THE DATAFRAME 

Most of the operations related to dateTime require the DateTime column as the primary index, 
or else it will throw an error. We can change the index with set_index() function.it takes two pa-
rameters one is column name you want to change as index, and another one is inplace=true. 
When inplace=True is passed, the data is renamed inplace, when inplace=False is passed (this is 
the default value, so isn't necessary), performs the operation and returns a copy of the object. 

 

Now the DateTime is the index of the dataframe. Now we can perform DateTime operations 
very easily. 
 

Data Frame Filtering based on index How to filter data based on particular 
year. 
 
To Check all the values occurred in a particular year let‟s say 2018 Run command df[„2018‟]. 
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Above result gives all the values recorded in year 2018. 

How to filter data based on year and month 
To View all observations that occurred in June 2018, run the be-
low command 
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Similarly, if you want to view the observations after particular year, month and date. then the 
command is 

 

If you need observations between two dates then command is 

 

For ex: if you need Observations between May 3rd and May 4th Of 2018 

then command is: df['5/3/2018':'5/4/2018'] 

Pandas Indexing and Selecting Data 

What is Indexing ? 
Indexing in pandas means simply selecting particular rows and columns of data from a Data-
Frame. Indexing could mean selecting  all the rows and some of the columns, some of the rows 
and all the columns, or some of each of the rows and columns. Indexing can also be known 
as Subset Selection. 
 
Let‟s load one csv file and convert that to data frame to perform the indexing and selection op-
erations. 

 
Once the data is loaded into data frame let‟s make Name as the index of this data frame. 
 
Note: index is the primary key it should not contain duplicates 
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Selecting Single Column 
 
In order to take single column, we simply put the name of the column in-between the brackets. 

 
 
 
Selecting Multiple Columns 
 
To select multiple columns, we must pass a list of columns in an indexing operator. 
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Selecting a single row: 
 
In order to select a single row using. loc[], we put a single row label in a .loc function. 

 

Selecting multiple rows: 
 
In order to select multiple rows, we put all the row labels in a list and pass that to .loc function. 
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Selecting multiple rows and columns: 

In order to select two rows and two columns, we select two rows which we want to select and 
two columns and put it in a separate list: 
Dataframe.loc[["row1", "row2"], ["column1", "column2"]] 

 

In order to select all the rows and some columns the syntax looks like: 
 
Dataframe.loc [ :, ["column1", "column2"]] 

 

Pandas- groupby 

A groupby operation involves some combination of splitting the object, applying a function, and 
combining the results. This can be used to group large amounts of data and compute operations 
on these groups. 
 
Let‟s load one csv file and convert that to data frame to perform the group-by operations. 
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groupby function based on single category 
 
Now we have data frame ready let‟s group the data based on „hlpi_name‟. 

 

Once group by operation is done we get a result as groupby object. 
 
Let‟s print the value contained in any one of group. For that use the name of the „hlpi_name‟. 
We use the function get_group() to find the entries contained in any of the groups. 
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groupby function based on more than one category 

Use groupby() function to form groups based on more than one category (i.e. Use more than 
one column to perform the splitting). 

 

We got the result as groupby object.  

Let‟s print the first entries in all the groups formed using first() function. 
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Operations on groups 
 
After splitting a data into a group, we can also apply a function to each group to perform some 
operations. 
Here is the Sample example to get sum of values in particular groups. 

 

We can also find min, max, average . .etc. 
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Merge/Join Datasets 

Joining and merging DataFrames is the core process to start with data analysis and machine 
learning tasks. It is one of the toolkits which every Data Analyst or Data Scientist should master 
because in almost all the cases data comes from multiple source and files. You may need to bring 
all the data in one place by some sort of join logic and then start your analysis. Thankfully you 
have the most popular library in python, pandas to your rescue! Pandas provides various facilities 
for easily combining different datasets. 
 
We can merge two data frames in pandas python by using the merge() function. The different 
arguments to merge() allow you to perform natural join, left join, right join, and full outer join in 
pandas. 

Understanding the different types of merge: 
 
Before you perform joint operations let‟s first load the two csv files and convert them into data 
frames df1 and df2. 

 

 
Natural join 
 
Natural join keeps only rows that match from the data frames(df1 and df2), specify the argument 
how=‟inner‟ 
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Syntax: 
 
pd.merge(df1, df2, on=column', how='inner') 
Return only the rows in which the left table have matching keys in the right table 

 

 

Full outer join 
 
Full outer join keeps all rows from both data frames, specify how=„outer‟. 

 

Syntax: 
 
pd.merge(df1, df2, on=column', how=‟outer‟) 
Returns all rows from both tables, join records from the left which have matching keys in the 
right table. 
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Left outer join 
 
Left outer join includes all the rows of your data frame df1 and only those from df2 that match, 
specify how =„Left. 

 

Syntax: 
 
pd.merge(df1, df2, on=column', how=left) 
Return all rows from the left table, and any rows with matching keys from the right table. 
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Right outer join 
 
Return all rows from the df2 table, and any rows with matching keys from the df1 table, specify 
how =„Right‟. 

 

Syntax: 
 
pd.merge(df1, df2, on=column', how=right) 
Return all rows from the right table, and any rows with matching keys from the left table. 
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UNIT – IV 

 

 

 

Introduction to Data Visualization Tools in Python 

Introduction to Matplotlib 

Matplotlib is the most popular plotting library for python which gives control over every aspect 
of a figure. It was designed to give the end user a similar feeling like MATLAB‟s graphical plot-
ting. In the coming sections we will learn about Seaborn that is built over matplotlib. The official 
page of Matplotlib is https://matplotlib.org. You can use this page for official installation in-
structions and various documentation links. One of the most important section on this page is 
the gallery section - https://matplotlib.org/gallery.html - it shows all the kind of plots/figures 
that matplotlib is capable of creating for you. You can select anyone of those, and it takes you 
the example page having the figure and very well documented code. Another important page is 
https://matplotlib.org/api/pyplot_summary.html- and it has the documentation functions in it. 

Matplotlib's architecture is composed of three main layers: the back-end layer, the artist layer 
where much of the heavy lifting happens and is usually the appropriate programming paradigm 
when writing a web application server, or a UI application, or perhaps a script to be shared with 
other developers, and the scripting layer, which is the appropriate layer for everyday purposes 
and is considered a lighter scripting interface to simplify common tasks and for a quick and easy 
generation of graphics and plots. 

Now let's go into each layer in a little more detail: 

Back-end layer has three built-in abstract interface classes: FigureCanvas, which defines and en-
compasses the area on which the figure is drawn. Renderer, an instance of the renderer class 
knows how to draw on the figure canvas. And finally, Event, which handles user inputs such as 
keyboard strokes and mouse clicks. 

Artist layer: It is composed of one main object, which is the Artist. The Artist is the object that 
knows how to take the Renderer and use it to put ink on the canvas. Everything you see on a 
Matplotlib figure is an Artist instance. The title, the lines, the tick labels, the images, and so on, 
all correspond to an individual Artist. There are two types of Artist objects. The first type is the 
primitive type, such as a line, a rectangle, a circle, or text. And the second type is the composite 
type, such as the figure or the axes. The top-level Matplotlib object that contains and manages all 
of the elements in a given graphic is the figure Artist, and the most important composite artist is 
the axes because it is where most of the Matplotlib API plotting methods are defined, including 
methods to create and manipulate the ticks, the axis lines, the grid or the plot background. Now 
it is important to note that each composite artist may contain other composite artists as well as 
primitive artists. So, a figure artist for example would contain an axis artist as well as a rectangle 
or text artists. 

 

Data Visualization Tools inPython- Introduction to Matplotlib, Basic plots using mat-

plotlib, Specialized Visualization Tools usingMatplotlib, Advanced Visualization Tools 

usingMatplotlib- WaffleCharts, WordClouds. 
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As for the scripting layer, it was developed for scientists who are not professional programmers 
and I'm sure you agree with me based on the histogram that we just created that the artist layer is 
syntactically heavy as it is meant for developers and not for individuals whose goal is to perform 
quick exploratory analysis of some data. Matplotlib's scripting layer is essentially the Matplot-
lib.pyplot interface, which automates the process of defining a canvas and defining a figure artist 
instance and connecting them. For more details, please refer:  

 http://aosabook.org/en/matplotlib.html 

Read a CSV and Generate a Line Plot with Matplotlib  

A line plot is used to represent quantitative values over a continuous interval or time period. It is 
generally used to depict trends on how the data has changed over time. 

In this sub-section, we will see how to use matplotlib to read a csv file and then generate a plot. 
We will use jupyter notebook. First, we do a basic example to showcase what a line plot is. 

 Now let us do a small case study using what we just learned now: 

• Download the dataset from the link:  

https://www.un.org/en/development/desa/population/migration/data/empirical 
2/migrationflows.asp  

The data set has all the country immigration information. We will use the one for Australia for 
our case study. 

 Use the tolist() method to get index and columns as lists. View the dimensions of dataframe us-
ing “.shape” parameter. 

After that let us clean the data set to remove few unnecessary columns. 

 Let us rename the column names so that it makes more sense. 

 Default index is numerical, but it is more convenient to index based on country names. 

 Remove the name of the index. 

 Let us now test it by pulling the data for Bangladesh. 

 Column names as numbers could be confusing. For example: year 1985 could be misunderstood 
as 1985th column. To avoid ambiguity, let us convert column names to strings and then use that 
to call full range of years. 

 We can also pass multiple criteria in the same line. 

Let us review the changes we have made to our dataframes. 

 Case Study – let us now study the trend of number of immigrants from Bangladesh to Australia. 
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 Since there are two rows of data, let us sum the values of each column and take first 20 years (to 
eliminate other years for which no values are present). 

 Next, we can plot by using the plot function. Automatically the x-axis is plotted with the index 
values and y-axis with column values 

 Basic Plots using Matplotlib 

Area Plot 

In the previous module we used line plot to see immigration from Bangladesh to Australia. Now 
let us try different types of basic plotting using matplotlib. 

Area plot 

Now let us use area plots to see to visualize cumulative immigration from top 5 countries to 
Canada. We will use the same process to clean data that we used in the previous section. 

 URL - https://s3-api.us-geo.objectstorage.softlayer.net/cf-
coursesdata/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx 

 Now clean up data using the same process as the one in the previous section : 

 The unstacked plot has a default transparency (alpha value) at 0.5. We can modify this value by 
passing in the alpha parameter. 

 Bar Chart 

A bar plot is a way of representing data where the length of the bars represents the magni-
tude/size of the feature/variable. Bar graphs usually represent numerical and categorical vari-
ables grouped in intervals. 

Let's compare the number of Icelandic immigrants (country = 'Iceland') to Canada from year 
1980 to 2013. 

 Histogram 

How could you visualize the answer to the following question ? 

What is the frequency distribution of the number (population) of new immigrants from the vari-
ous countries to Canada in 2013 ? 

To answer this one would need to plot a histogram - it partitions the x-axis into bins, assigns 
each data point in our dataset to a bin, and then counts the number of data points that have been 
assigned to each bin. So, the y-axis is the frequency or the number of data points in each bin. 
Note that we can change the bin size and usually one needs to tweak it so that the distribution is 
displayed nicely. 
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By default, the histogram method breaks up the dataset into 10 bins. The figure below summa-
rizes the bin ranges and the frequency distribution of immigration in 2013. We can see that in 
2013: 

178 Countries contributed between 0 to 3412.9 immigrants 

11 Countries contributed between 3412.9 to 6825.8 immigrants 

1 Country contributed between 6285.8 to 10238.7 immigrants, and so on. 

 In the above plot, the x-axis represents the population range of immigrants in intervals of 
3412.9. The y-axis represents the number of countries that contributed to the population. 

Notice that the x-axis labels do not match with the bin size. This can be fixed by passing in a 
xticks keyword that contains the list of the bin sizes, as follows: 

 Specialized Visualization Tools using Matplotlib 

Pie Charts 

A pie chart is a circular graphic that displays numeric proportions by dividing a circle (or pie) 
into proportional slices. You are most likely already familiar with pie charts as it is widely used in 
business and media. We can create pie charts in Matplotlib by passing in the kind=pie keyword. 

Let's use a pie chart to explore the proportion (percentage) of new immigrants grouped by con-
tinents for the entire time period from 1980 to 2013. We can continue to use the same dataframe 
further. 

 The above visual is not very clear, the numbers and text overlap in some instances. 

Let's make a few modifications to improve the visuals: 

 Raw code : 

colors_list = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', 'lightgreen', 'pink'] explode_list = 
[0.1, 0, 0, 0, 0.1, 0.1] # ratio for each continent with which to offset each wedge. 

df_continents['Total'].plot(kind='pie', 

figsize=(15, 6), 

autopct='%1.1f%%', 

startangle=90, 

shadow=True, 

labels=None, # turn off labels on pie chart 
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pctdistance=1.12, # the ratio between the center of each pie slice and the start of the text gener-
ated by autopct 

colors=colors_list, # add custom colors 

explode=explode_list # 'explode' lowest 3 continents) 

# scale the title up by 12% to match pctdistance 

plt.title('Immigration to Canada by Continent [1980 - 2013]', y=1.12) 

plt.axis('equal') 

# add legend 

plt.legend(labels=df_continents.index, loc='upper left') 

plt.show() 

 Box Plot 

A box plot is a way of statistically representing the distribution of the data through five main di-
mensions : 

Minimum: Smallest number in the dataset. 

First quartile: Middle number between the minimum and the median. 

Second quartile (Median): Middle number of the (sorted) dataset. 

Third quartile: Middle number between median and maximum. 

Maximum: Highest number in the dataset. 

 We can immediately make a few key observations from the plot above: 

The minimum number of immigrants is around 200 (min), maximum number is around 1300 
(max), and median number of immigrants is around 900 (median). 

25% of the years for period 1980 - 2013 had an annual immigrant count of ~500 or fewer (First 
quartile). 

75% of the years for period 1980 - 2013 had an annual immigrant count of ~1100 or fewer 
(Third quartile). 

We can view the actual numbers by calling the describe() method on the dataframe. 
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Scatter Plots 

A scatter plot (2D) is a useful method of comparing variables against each other. Scatter plots 
look similar to line plots in that they both map independent and dependent variables on a 2D 
graph. While the datapoints are connected by a line in a line plot, they are not connected in a 
scatter plot. The data in a scatter plot is considered to express a trend. With further analysis using 
tools like regression, we can mathematically calculate this relationship and use it to predict trends 
outside the dataset. 

Using a scatter plot, let's visualize the trend of total immigration to Canada (all countries com-
bined) for the years 1980 - 2013. 

 So, let's try to plot a linear line of best fit, and use it to predict the number of immigrants in 
2015. 

Step 1: Get the equation of line of best fit. We will use Numpy's polyfit() method by passing in 
the following: 

x: x-coordinates of the data. 

y: y-coordinates of the data. 

deg: Degree of fitting polynomial. 1 = linear, 2 = quadratic, and so on. 

 Plot the regression line on the scatter plot.  

 'No. Immigrants = 5567 * Year + -10926195' 

Bubble Plots 

A bubble plot is a variation of the scatter plot that displays three dimensions of data (x, y, z). The 
data points are replaced with bubbles, and the size of the bubble is determined by the third vari-
able 'z', also known as the weight. In maplotlib, we can pass in an array or scalar to the keyword s 
to plot(), that contains the weight of each point. 

Let us compare Argentina's immigration to that of its neighbour Brazil. Let's do that using a 
bubble plot of immigration from Brazil and Argentina for the years 1980 - 2013. We will set the 
weights for the bubble as the normalized value of the population for each year. 

 Create the normalized weights 

There are several methods of normalizations in statistics, each with its own use. In this case, we 
will use feature scaling to bring all values into the range [0,1]. The general formula is: 

where X is an original value, X' is the normalized value. The formula sets the max value in the 
dataset to 1, and sets the min value to 0. The rest of the datapoints are scaled to a value between 
0-1 accordingly. 
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Raw Code : 

 

# normalize Brazil data 

norm_brazil = (df_can_t['Brazil'] - df_can_t['Brazil'].min()) / (df_can_t['Brazil'].max() - 
df_can_t['Brazil'].min()) 

 

# normalize Argentina data 

norm_argentina = (df_can_t['Argentina'] - df_can_t['Argentina'].min()) / 
(df_can_t['Argentina'].max() - df_can_t['Argentina'].min() 

  

Raw Code : 

# Brazil 

ax0 = df_can_t.plot(kind='scatter', 

x='Year', 

y='Brazil', 

figsize=(14, 8), 

alpha=0.5, # transparency 

color='green', 

s=norm_brazil * 2000 + 10, # pass in weights 

xlim=(1975, 2015) 

) 

# Argentina 

ax1 = df_can_t.plot(kind='scatter', 

x='Year', 

y='Argentina',                                                                                                                                                                                                                                                                                                                        
alpha=0.5, 

color="blue", 
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s=norm_argentina * 2000 + 10, 

ax = ax0 

) 

ax0.set_ylabel('Number of Immigrants') 

ax0.set_title('Immigration from Brazil and Argentina from 1980 - 2013') 

ax0.legend(['Brazil', 'Argentina'], loc='upper left', fontsize='x-large') 

  

The size of the bubble corresponds to the magnitude of immigrating population for that year, 
compared to the 1980 - 2013 data. The larger the bubble, the more immigrants in that year. 

Waffle Chart 

A waffle chart is an interesting visualization that is normally created to display progress toward 
goals. It is commonly an effective option when you are trying to add interesting visualization fea-
tures to a visual that consists mainly of cells, such as an Excel dashboard. 

 The first step into creating a waffle chart is determing the proportion of each category with re-
spect to the total. 

 The second step is defining the overall size of the waffle chart. 

 The third step is using the proportion of each category to determe it respective number of tiles 

 The fourth step is creating a matrix that resembles the waffle chart and populating it. 

 Raw Code : 

# initialize the waffle chart as an empty matrix 

waffle_chart = np.zeros((height, width)) 

# define indices to loop through waffle chart 

category_index = 0 

tile_index = 0 

 

# populate the waffle chart 

for col in range(width): 
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for row in range(height): 

tile_index += 1 

# if the number of tiles populated for the current category is equal to its 

corresponding allocated tiles... 

     if tile_index > sum(tiles_per_category[0:category_index]): 

          # ...proceed to the next category 

          category_index += 1 

# set the class value to an integer, which increases with class 

waffle_chart[row, col] = category_index 

print ('Waffle chart populated!') 

 Map the waffle chart matrix into a visual. 

 Prettify the chart. 

 Word Clouds 

Word clouds (also known as text clouds or tag clouds) work in a simple way: the more a specific 
word appears in a source of textual data (such as a speech, blog post, or database), the bigger and 
bolder it appears in the word cloud. 

Interesting! So, in the first 2000 words in the novel, the most common words are Alice, said, lit-
tle, Queen, and so on. Let's resize the cloud so that we can see the less frequent words a little 
better. 

Much better! However, said isn't really an informative word. So, let's add it to our stop words 
and re-generate the cloud. 
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UNIT – V 

 

 

Introduction to Seaborn 

Seaborn is a statistical plotting library and is built on top of matplotlib. It has beautiful default 
styles and is compatible with pandas dataframe objects. In order to install it use the following 
commands: 

• Anaconda users: conda install seaborn 

• Python users: pip install seaborn 

• Seaborn code is opensource so one can read it at 

https://github.com/mwaskom/seaborn. This page has information along with the link to the of-
ficial documentation page - https://seaborn.pydata.org/. The subsection of this page 
(https://seaborn.pydata.org/examples/index.html) shows the example visualizations Seaborn is 
able to work with. The other important section to visit is the one which has API information - 
https://seaborn.pydata.org/api.html. 

Seaborn functionalities and usage 

Let us now delve into some of the functionalities Seaborn provides. We will run some snippet of 
codes in Jupyter notebook (although you can use any other IDE) to exhibit the key features. 

Distribution Plots 

We will first try to do distribution plots. To get started, we first import one of the standard data-
sets that comes with Seaborn. The one we choose for our exercise is diamonds.csv. You can pick 
other datasets from https://github.com/mwaskom/seaborn-data. 
 We then use the “displot” function to plot the distribution of a single variable 

 As seen above, we get a histogram and a Kernel Density Estimate (KDE) plot. We can custom-
ize it further by removing KDE and specifying the number of bins. 

 Joint plot allows us to plot the relationship represented by bivariate data. 

 The above diagram shows that as the carat approaches the value „5‟, the value of the diamond 
also increases which is a phenomenon we also observe. The „jointplot‟ function can take multiple 
values for the parameter „kind‟ – scatter, reg, resid, kde, hex. 

Let us see the plot using „reg‟ which will provide regression and kernel density fits. 

 Next Steps for students to try : 

Introduction to Seaborn: Seaborn functionalities and usage, Spatial Visualizations 

and Analysis in Python with Folium, Case Study. 
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1. Pairplot function: will plot pairwise relationships across an entire dataframe such that 
each numerical variable will be depicted in the y-axis across a single row and in the x-axis across 
a single column. Try the command: sns.pairplot(dmd) 

2. Rugplot function: It plots datapoints in an array as sticks on an axis. Try the command: 
sns.rugplot(dmd['price']) 

3. Once you are comfortable with these then you can try out KDE plotting. KDE plotting 
is used for visualizing the probability density of a continuous variable or a single graph for multi-
ple samples.  

Reference: https://seaborn.pydata.org/generated/seaborn.kdeplot.html 

Categorical Plots : 

Now let us discuss how to use seaborn to plot categorical data. But let us first understand what 
categorical variable is. A categorical variable is one that has multiple categories but has no intrin-
sic ordering specified for categories. For example: Blood type of a person can be any one of A, 
B, AB or O. 

Now let us see examples of the plots: 

Barplot and countplot allow you to aggregate data with respective to each category. Barplot al-
lows to you aggregate around some function but the default is mean. 

 The difference between countplot and barplot is that countplot explicitly counts the number of 
occurrences. 

 Boxplot shows the quartiles of the dataset while the whiskers extend encompass the rest of the 
distribution but leave out the points that are the outliers. 

 Violinplot shows the distribution of data across several levels of categorical variable(s) thus 
helping in comparison of the distribution. Wherever actual datapoints are not present, KDE is 
used to estimate the remaining points. 

The stripplot draws a scatterplot where one variable is categorical. 

 Matrix Plots : 

Now let us delve into matrix plots. It helps to segregate data into color-encoded matrices which 
can further help in unsupervised learning methods like clustering. 

 The corr() function gives the matrix form to correlation data. 

Below command generates the heatmap. 

 Let us now try the pivot_table formation. Now we need to select the appropriate data for that. 
Among the available datasets in seaborn, flights data is most suitable to depict this. Let us try to 
depict the total number of passengers for each month of the year. 
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 The cluster map uses hierarchal clustering. It no more depicts months and years in order but 
groups them similarity in the passenger count. So, it can be inferred that April and May are simi-
lar in passenger volume. 

 Regression plot : 

In this final section, we will explore seaborn and see how efficient it is to create regression lines 
and fits using this library. Implot function allows you to display linear models. 

 Spatial Visualizations and Analysis in Python with Folium 

Folium is a powerful data visualization library in Python that was built primarily to help people 
visualize geospatial data. With Folium, you can create a map of any location in the world if you 
know its latitude and longitude values. You can also create a map and superimpose markers as 
well as clusters of markers on top of the map for cool and very interesting visualizations. You 
can also create maps of different styles such as street level map, stamen map. 

Folium is not available by default. So, we first need to install it before we can import it. We can 
use the command : conda install -c conda-forge folium=0.5.0 --yes 

It is not available via default conda channel. Try using conda-forge channel to install folium as 
shown: conda install -c conda-forge folium 

Generating the world map is straightforward in Folium. You simply create a Folium Map object 
and then you display it. What is attractive about Folium maps is that they are interactive, so you 
can zoom into any region of interest despite the initial zoom level. 

 Go ahead. Try zooming in and out of the rendered map above. You can customize this default 
definition of the world map by specifying the center of your map and the initial zoom level. All 
locations on a map are defined by their respective Latitude and Longitude values. So, you can 
create a map and pass in a center of Latitude and Longitude values of [0, 0]. For a defined center, 
you can also define the initial zoom level into that location when the map is rendered. The higher 
the zoom level the more the map is zoomed into the center. Let's create a map centered around 
Canada and play with the zoom level to see how it affects the rendered map. 

 Let's create the map again with a higher zoom level 

 As you can see, the higher the zoom level the more the map is zoomed into the given center. 

Stamen Toner Maps 

These are high-contrast B+W (black and white) maps. They are perfect for data mashups and 
exploring river meanders and coastal zones. Let's create a Stamen Toner map of Canada with a 
zoom level of 4. 

 Stamen Terrain Maps 

These are maps that feature hill shading and natural vegetation colors. They showcase advanced 
labeling and linework generalization of dual-carriageway roads. Let's create a Stamen Terrain 
map of Canada with zoom level 4. 
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 Mapbox Bright Maps 

These are maps that are quite like the default style, except that the borders are not visible with a 
low zoom level. Furthermore, unlike the default style where country names are displayed in each 
country's native language, Mapbox Bright style displays all country names in English. Let's create 
a world map with this style. 

Case Study 

Now that you are familiar with folium, let us use it for our next case study which is as mentioned 
below: 

Case Study: An e-commerce company „ wants to get into logistics “Deliver4U” . It wants to 
know the pattern for maximum pickup calls from different areas of the city throughout the day. 
This will result in: 

i) Build optimum number of stations where its pickup delivery personnel will be located. 

ii) Ensure pickup personnel reaches the pickup location at the earliest possible time. 

For this the company uses its existing customer data in Delhi to find the highest density of prob-
able pickup locations in the future. 

Solution: 

• Pre-requisites : Python, Jupyter Notebooks, Pandas 

• Data set : Please download the following from the location specified by the trainer. 

The dataset contains two separate data files – train_del.csv and test_del.csv. The difference is 
that train_del.csv contains additional column which is trip_duration which we will not be needed 
for our present analysis. 

• Importing and pre-processing data: 

a) Import libraries – Pandas and Folium. Drop the trip_duration column and combine the 2 dif-
ferent files as one dataframe. 

 We will need to generate some columns such as month or other time features using Datetime 
package of python. Let us then use it with Folium 

 Please note that month, week, day, hour columns will be used next for our analysis 

Note the following regarding visualizing spatial data with Folium: 

• Maps are defined as folium.Map object. We will need to add other objects on top of this before 
rendering 

• Different map tiles for map rendered by Folium can be seen at: 
https://github.com/pythonvisualization/folium/tree/master/folium/templates/tiles 
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• Folium.Map() : First thing to be executed when you work with Folium. 

Let us define the default map object: 

Let us now visualize the rides data using a class method called Heatmap() 

 Code for reference: 

from folium.plugins import HeatMap 

df_copy = df[df.month>4].copy() 

df_copy['count'] = 1 

base_map = generateBaseMap() 

Heat-
Map(data=df_copy[['pickup_latitude','pickup_longitude','count']].groupby(['pickup_latitude','pick
up_longitude']).sum().reset_index().values.tolist(), radius=8, max_zoom=13).add_to(base_map) 

Interpretation of the output: 

There is high demand for cabs in areas marked by the heat map which is central Delhi most 
probably and other surrounding areas. 

Now let us add functionality to add markers to the map by using the folium.ClickForMarker() 
object. 

After adding the below line of code, we can add markers on the map to recommends points 
where logistic pickup stops can be built 

 We can also animate our heat maps to dynamically change the data on timely basis based on a 
certain dimension of time. This can be done using HeatMapWithTime(). Use the following code: 

df_hour_list = [] 

for hour in df_copy.hour.sort_values().unique(): 

df_hour_list.append(df_copy.loc[df_copy.hour == hour, ['pickup_latitude', 'pickup_longitude', 
'count']].groupby(['pickup_latitude','pickup_longitude']).sum().reset_index().values.tolist()) 

from folium.plugins import HeatMapWithTime 

base_map = generateBaseMap(default_zoom_start=11) 

HeatMapWithTime(df_hour_list, radius=5, gradient={0.2: 'blue', 0.4: 'lime', 0.6: 

'orange', 1: 'red'}, min_opacity=0.5, max_opacity=0.8, 

use_local_extrema=True).add_to(base_map) 
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base_map 

 Conclusion 

Throughout the city, pickups are more probable from central area so better to set lot of pickup 
stops at these locations 

Therefore, by using maps we can highlight trends and uncover patterns and derive insights from 
the data. 

 


